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Motivation

The problem of non-perturbative corrections and their matching to
perturbative ones . . .

Relativistic two-particle problem . . .

Increasing experimental precision in observation of different e+e−

annihilation channels

Radiative return method allows scrutinizing the threshold region

Intriguing experimental results on threshold enhancement in
e+e− → ΛΛ̄

SGS-like factor in QCD?

Permanent interest of community and discussions in literature

How to treat the factor within general-purpose computer codes?
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The SGS factor features (I)

It’s known for a long time that the re-scattering correction close to the
threshold of a charged-particle-pair production is proportional to |Ψ(0)|2

[A. Sommerfeld, Atmobau und Spektralinien (1921); J. Schwinger,
Particles, Sources, and Fields, Vol.3.]

G. Gamow found the corresponding factor for the Coulomb barrier in
nuclear interactions (1928)

A. Sakharov considered just Interaction of an electron and positron in

pair production (1948)

The Sommerfeld-Gamow-Sakharov (SGS) factor in the nonrelativistic
approximation reads

T =
η

1− e−η
, η = −Q1Q2

2πα

v

where v is the relative velocity (by construction) of the particles with
charges Q1,2.
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The SGS factor features (II)

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

T
(v
)

v

Andrej Arbuzov Relativization of SGS factor . . . 4/ 17



The SGS factor features (III)

Perturbative expansion in α

T ≈ 1 +
πα

v
+

π2α2

3v2
+O

(

α3

v3

)

but for v → 0 it breaks down

For opposite charges at very small v the factor behaves as

T

∣

∣

∣

∣

Q1Q2=−1

v→0
−→

2πα

v

For equal charges at very small v the factor vanishes

T

∣

∣

∣

∣

Q1Q2=1

v→0
−→ 0

Andrej Arbuzov Relativization of SGS factor . . . 5/ 17



Approaches to relativization of SGS factor (I)

Ad hoc: v → 2
√

1−m2/E 2 = 2β
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Approaches to relativization of SGS factor (I)

Ad hoc: v → 2
√

1−m2/E 2 = 2β

(Quasi)-relativistic quasi-potential equations

It is possible to solve the two-particle problem with relativistic
kinematics and interaction, but . . .

Bethe-Salpeter equations (?)

Resummation of (ladder) Feynman diagrams

Extrapolation of (one-loop) perturbative calculations
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Approaches to relativization of SGS factor (II)

Conditions on a relativized factor:

Non-relativistic limit (must have)
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Approaches to relativization of SGS factor (II)

Conditions on a relativized factor:

Non-relativistic limit (must have)

Ultra-relativistic limit s ≫ m2
i ⇔ v → 1 (desirable)

Heavy-mass limit m1 ≪ m2 (very important)

Matching with perturbative calculations (?)
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Quasi-potential relativistic equations (I)

There are many results in the literature on (quasi)relativistic two-particle
eqs. Just look at |Ψ(0)|2. Questions to these approaches always remain,
but we can play there and understand the SGS factor better
In particular, in [A.A., Nuovo Cim.’1994] the case of scalar particles with
arbitrary masses was evaluated

1

i

(

∂

∂t1
+

∂

∂t2

)

Ψ =
(

√

~p1 2 +m2
1 +

√

~p2 2 +m2
2

)

Ψ

Use equal velocity reference frame: ~p2 = −~p1 m2/m1 ⇔ ~v1 = −~v2.

Minimal substitution p
µ
i → p

µ
i − eA

µ
i gives

[

1

ρ

∂2

∂ρ2
ρ+ 1−

2α

vρ
−

l(l + 1)

ρ2
+

α2

4ρ2
(−1 + ~u 2)

]

Rl(ρ) = 0
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Quasi-potential relativistic equations (II)

For pure Coulomb interaction (A0) we get

vC = 2

√

s − 4m2

s
= 2β

Taking into account ~A leads to the relativistic relative velocity

v =

√

[s − (m1 −m2)2][s − (m1 +m2)2]

s −m2
1 −m2

2

The same result for |Ψ(0)|2 was obtained also by I.T. Todorov
[PRD’1971], H.W. Crater et al. [Ann.Phys.(NY)’1983, PRD’1992]

Obviously the limiting cases m1 ≪ m2, m1 ≫ m2 where we have exact
solutions of the Klein-Gordon (and Dirac) equations are reproduced
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Quasi-potential relativistic equations (III)

Jin-Hee Yoon and Cheuk-Yin Wong, “Relativistic modification of the

Gamow factor” [PRC’2000, JPG’2005]:

T (v) → K (v) = T (v) · κ(v)

where κ depends on the type of particles etc.

O.P. Solovtsova and Yu.D. Chernichenko, “Threshold resummation

S-factor in QCD: the case of unequal masses”, [Yad.Fiz.’2010]
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Resummation of Feynman diagrams

V.N. Baier and V.S. Fadin, [ZhETF’1969] have shown that resummation
of ladder-type Feynman diagrams for e+e− pair production leads to the
factor in the form:

Tresum. =
πα/β

1− e−πα/β
= T (2β)

Omitting diagrams with crossed photon lines corresponds to keeping only
the Coulomb interactions. In this case we have an agreement with the
quasi-potential picture

Resummation of non-ladder diagrams is difficult . . .
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Perturbative calculations (I)

The SGS factor has a non-perturbative nature. But its expansion in α/v
for α ≪ v ≪ 1 makes sense

What goes on there in direct perturbative calculations?

Let’s look at O (α) FSR corrections to e+e− → µ+µ− with exact muon
mass dependence, see e.g. A.A., D.Bardin, A.Leike [MPLA’1992],
A.A. et al. [JHEP’2007]

The expansion in β starts from πα/β which has the correct
non-relativistic limit, i.e. it agrees with the SGS factor expansion

What is the source of the Coulomb singularity in perturbative calculation?

What appears in the further expansion over β?
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Perturbative calculations (II)

A. Hoang [PRD’1997]: one-loop contributions to moduli squared electric
and magnetic form factors above the threshold:

(α

π

)

g (1)
e (s)

β→0
=

απ

2β
− 4

α

π
+

απβ

2
−

4α

3π

[

ln
m2

λ2
+

2

3

]

β2 +O
(

β3
)

(α

π

)

g (1)
m (s)

β→0
=

απ

2β
− 4

α

π
+

απβ

2
−

α

3π

[

4 ln
m2

λ2
−

1

3

]

β2 +O
(

β3
)

The first and the third terms agree with the expansion of the SGS factor
if v = 2β/(1 + β2) i.e. the true relativistic relative velocity.

The second term comes from short distance (∼ 1/m) interactions.
Factorization then gives

T (v) ·

(

1− 4
α

π

)

N.B. The picture is reproduced with the O
(

α2
)

form factors [R.Barbieri,
J.A.Mignaco, E.Remiddi, Nuovo Cim.’1972]
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Perturbative calculations (III)

After adding contributions of soft and hard photons the picture persists:
nontrivial additional terms start to appear in O

(

β3
)

The source of the singularity is the scalar triangular loop diagram:

δσ1−loop = σBorn α

2π
(s −m2

1 −m2
2) · C0(m

2
1,m

2
2, s,m

2
1,m

2
γ ,m

2
2)

The pre-factor (s −m2
1 −m2

2) and C0(. . .) are universal for spinor, scalar
and vector particles and for all partial waves involved in σBorn

Direct calculations of C0 for arbitrary masses gives an agreement to the
expansion of the SGS factor with the proper relative relativistic velocity

v =

√

[s − (m1 −m2)2][s − (m1 +m2)2]

s −m2
1 −m2

2
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Matching with perturbative calculations

We should match perturbative and non-perturbative results:

σCorr. = σBorn

(

T (v)−
πα

v
−
π2α2

3v2
− . . .

)

+∆σ1−loop+∆σ2−loop + . . .

For a cross check the matching should be always verified
analytically by looking at the threshold behavior of the
perturbative corrections
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Unstable particle production

In the case of production of unstable particles, e.g. tt̄ or W+W− one
can not relay upon bound state effect (|Ψ(0)|2) (multiple photon
exchange) since the lifetime is comparable with the b.s. formation time,
see e.g. V.S. Fadin and V.A. Khoze [Yad.Fiz.’1988], V.S. Fadin,
V.A. Khoze and T. Sjostrand [Z.Phys.C’1990]

Nevertheless, direct perturbative calculations show the presence of the
Coulomb singularity. See e.g. z , γ∗ → W+W− in [D.Y.Bardin,
W.Beenakker, A.Denner, PLB’1993].

N.B. Authors of this paper got

β =

√

[s − (m1 +m2)2][s − (m1 −m2)2]

s

But if we restore the factor being omitted there

s

2(s −m2
1 −m2

2)
≈ 1

we get exactly the relativistic relative velocity (one half)
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Outlook

Relativization of the SGS factor is not unique
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Outlook

Relativization of the SGS factor is not unique

Using just the relativistic relative velocity in the standard formula
looks preferable

The factor is generalized for non-equal-mass case

Numerically the effects for large v are subtle

SGS factor is the same for different partial waves and spins

Matching with perturbative calculations should be taken into
account
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