On relativization of the Sommerfeld-Gamow-Sakharov factor

A.B. Arbuzov^{1,2}, T.V. Kopylova²

¹BLTP, JINR, Dubna, Russia

²Dep. of higher mathematics, Dubna University, Dubna

From Φ to Ψ , Novosibirsk, 19-22 September 2011

September 19, 2011

Motivation

- The problem of *non-perturbative* corrections and their matching to perturbative ones . . .
- Relativistic two-particle problem . . .
- Increasing experimental precision in observation of different e⁺e⁻ annihilation channels
- Radiative return method allows scrutinizing the threshold region
- Intriguing experimental results on threshold enhancement in $e^+e^- o \Lambda \bar{\Lambda}$
- SGS-like factor in QCD?
- Permanent interest of community and discussions in literature
- How to treat the factor within general-purpose computer codes?

The SGS factor features (I)

It's known for a long time that the re-scattering correction close to the threshold of a charged-particle-pair production is proportional to $|\Psi(0)|^2$ [A. Sommerfeld, Atmobau und Spektralinien (1921); J. Schwinger, Particles, Sources, and Fields, Vol.3.]

G. Gamow found the corresponding factor for the Coulomb barrier in nuclear interactions (1928)

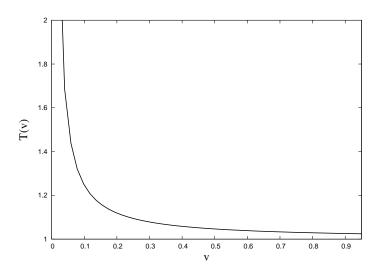
A. Sakharov considered just *Interaction of an electron and positron in pair production* (1948)

The Sommerfeld-Gamow-Sakharov (SGS) factor in the nonrelativistic approximation reads

$$T = \frac{\eta}{1 - e^{-\eta}}, \qquad \eta = -Q_1 Q_2 \frac{2\pi\alpha}{\nu}$$

where v is the relative velocity (by construction) of the particles with charges $Q_{1,2}$.

The SGS factor features (II)



The SGS factor features (III)

Perturbative expansion in α

$$T \approx 1 + \frac{\pi \alpha}{v} + \frac{\pi^2 \alpha^2}{3v^2} + \mathcal{O}\left(\frac{\alpha^3}{v^3}\right)$$

but for $v \rightarrow 0$ it breaks down

For opposite charges at very small v the factor behaves as

$$T \bigg|_{Q_1 Q_2 = -1} \stackrel{v \to 0}{\longrightarrow} \frac{2\pi\alpha}{v}$$

For equal charges at very small v the factor vanishes

$$T \bigg|_{Q_1 Q_2 = 1} \stackrel{v \to 0}{\longrightarrow} 0$$

■ *Ad hoc*:
$$v \to 2\sqrt{1 - m^2/E^2} = 2\beta$$

- *Ad hoc*: $v \to 2\sqrt{1 m^2/E^2} = 2\beta$
- (Quasi)-relativistic quasi-potential equations
 It is possible to solve the two-particle problem with relativistic kinematics and interaction, but . . .

- *Ad hoc*: $v \to 2\sqrt{1 m^2/E^2} = 2\beta$
- (Quasi)-relativistic quasi-potential equations
 It is possible to solve the two-particle problem with relativistic kinematics and interaction, but . . .
- Bethe-Salpeter equations (?)

- *Ad hoc*: $v \to 2\sqrt{1 m^2/E^2} = 2\beta$
- Quasi)-relativistic quasi-potential equations
 It is possible to solve the two-particle problem with relativistic kinematics and interaction, but . . .
- Bethe-Salpeter equations (?)
- Resummation of (ladder) Feynman diagrams

- *Ad hoc*: $v \to 2\sqrt{1 m^2/E^2} = 2\beta$
- Quasi)-relativistic quasi-potential equations
 It is possible to solve the two-particle problem with relativistic kinematics and interaction, but . . .
- Bethe-Salpeter equations (?)
- Resummation of (ladder) Feynman diagrams
- Extrapolation of (one-loop) perturbative calculations

Conditions on a relativized factor:

■ Non-relativistic limit (must have)

Conditions on a relativized factor:

- Non-relativistic limit (must have)
- Ultra-relativistic limit $s \gg m_i^2 \iff v \to 1$ (desirable)

Conditions on a relativized factor:

- Non-relativistic limit (must have)
- Ultra-relativistic limit $s \gg m_i^2 \iff v \to 1$ (desirable)
- Heavy-mass limit $m_1 \ll m_2$ (very important)

Conditions on a relativized factor:

- Non-relativistic limit (must have)
- Ultra-relativistic limit $s \gg m_i^2 \iff v \to 1$ (desirable)
- Heavy-mass limit $m_1 \ll m_2$ (very important)
- Matching with perturbative calculations (?)

Quasi-potential relativistic equations (I)

There are many results in the literature on (quasi)relativistic two-particle eqs. Just look at $|\Psi(0)|^2$. Questions to these approaches always remain, but we can play there and understand the SGS factor better In particular, in [A.A., Nuovo Cim.'1994] the case of scalar particles with arbitrary masses was evaluated

$$\frac{1}{i}\left(\frac{\partial}{\partial t_1} + \frac{\partial}{\partial t_2}\right)\Psi = \left(\sqrt{\vec{p}_1^2 + m_1^2} + \sqrt{\vec{p}_2^2 + m_2^2}\right)\Psi$$

Use equal velocity reference frame: $\vec{p}_2 = -\vec{p}_1 \ m_2/m_1 \ \Leftrightarrow \ \vec{v}_1 = -\vec{v}_2.$

Minimal substitution $p_i^\mu o p_i^\mu - e A_i^\mu$ gives

$$\left[\frac{1}{\rho}\frac{\partial^2}{\partial\rho^2}\rho + 1 - \frac{2\alpha}{\nu\rho} - \frac{I(I+1)}{\rho^2} + \frac{\alpha^2}{4\rho^2}(-1 + \vec{u}^2)\right]R_I(\rho) = 0$$

Quasi-potential relativistic equations (II)

For pure Coulomb interaction (A^0) we get

$$v_C = 2\sqrt{\frac{s - 4m^2}{s}} = 2\beta$$

Taking into account \vec{A} leads to the relativistic relative velocity

$$v = \frac{\sqrt{[s - (m_1 - m_2)^2][s - (m_1 + m_2)^2]}}{s - m_1^2 - m_2^2}$$

The same result for $|\Psi(0)|^2$ was obtained also by I.T. Todorov [PRD'1971], H.W. Crater et al. [Ann.Phys.(NY)'1983, PRD'1992]

Obviously the limiting cases $m_1 \ll m_2$, $m_1 \gg m_2$ where we have exact solutions of the Klein-Gordon (and Dirac) equations are reproduced

Quasi-potential relativistic equations (III)

Jin-Hee Yoon and Cheuk-Yin Wong, "Relativistic modification of the Gamow factor" [PRC'2000, JPG'2005]:

$$T(v) \rightarrow K(v) = T(v) \cdot \kappa(v)$$

where κ depends on the type of particles etc.

O.P. Solovtsova and Yu.D. Chernichenko, "Threshold resummation S-factor in QCD: the case of unequal masses", [Yad.Fiz.'2010]

Resummation of Feynman diagrams

V.N. Baier and V.S. Fadin, [ZhETF'1969] have shown that resummation of ladder-type Feynman diagrams for e^+e^- pair production leads to the factor in the form:

$$T_{
m resum.} = rac{\pi lpha/eta}{1 - e^{-\pi lpha/eta}} = T(2eta)$$

Omitting diagrams with crossed photon lines corresponds to keeping only the Coulomb interactions. In this case we have an agreement with the quasi-potential picture

Resummation of non-ladder diagrams is difficult . . .

Perturbative calculations (I)

The SGS factor has a non-perturbative nature. But its expansion in α/v for $\alpha \ll v \ll 1$ makes sense

What goes on there in direct perturbative calculations?

Let's look at $\mathcal{O}(\alpha)$ FSR corrections to $e^+e^- \to \mu^+\mu^-$ with exact muon mass dependence, see *e.g.* A.A., D.Bardin, A.Leike [MPLA'1992], A.A. *et al.* [JHEP'2007]

The expansion in β starts from $\pi\alpha/\beta$ which has the correct non-relativistic limit, *i.e.* it agrees with the SGS factor expansion

What is the source of the Coulomb singularity in perturbative calculation?

What appears in the further expansion over β ?

Perturbative calculations (II)

A. Hoang [PRD'1997]: one-loop contributions to moduli squared electric and magnetic form factors above the threshold:

$$\left(\frac{\alpha}{\pi}\right) g_{e}^{(1)}(s) \stackrel{\beta \to 0}{=} \frac{\alpha \pi}{2\beta} - 4\frac{\alpha}{\pi} + \frac{\alpha \pi \beta}{2} - \frac{4\alpha}{3\pi} \left[\ln \frac{m^{2}}{\lambda^{2}} + \frac{2}{3} \right] \beta^{2} + \mathcal{O}\left(\beta^{3}\right)$$

$$\left(\frac{\alpha}{\pi}\right) g_{m}^{(1)}(s) \stackrel{\beta \to 0}{=} \frac{\alpha \pi}{2\beta} - 4\frac{\alpha}{\pi} + \frac{\alpha \pi \beta}{2} - \frac{\alpha}{3\pi} \left[4 \ln \frac{m^{2}}{\lambda^{2}} - \frac{1}{3} \right] \beta^{2} + \mathcal{O}\left(\beta^{3}\right)$$

The first and the third terms agree with the expansion of the SGS factor if $v = 2\beta/(1+\beta^2)$ i.e. the true relativistic relative velocity.

The second term comes from short distance ($\sim 1/m$) interactions. Factorization then gives

$$T(v) \cdot \left(1 - 4\frac{\alpha}{\pi}\right)$$

N.B. The picture is reproduced with the $\mathcal{O}\left(\alpha^2\right)$ form factors [R.Barbieri, J.A.Mignaco, E.Remiddi, Nuovo Cim.'1972]

Perturbative calculations (III)

After adding contributions of soft and hard photons the picture persists: nontrivial additional terms start to appear in $\mathcal{O}\left(\beta^3\right)$

The source of the singularity is the scalar triangular loop diagram:

$$\delta\sigma^{\rm 1-loop} = \sigma^{\rm Born} \frac{\alpha}{2\pi} (s-m_1^2-m_2^2) \cdot C_0(m_1^2,m_2^2,s,m_1^2,m_\gamma^2,m_2^2)$$

The pre-factor $(s-m_1^2-m_2^2)$ and $C_0(...)$ are universal for spinor, scalar and vector particles and for all partial waves involved in $\sigma^{\rm Born}$

Direct calculations of C_0 for arbitrary masses gives an agreement to the expansion of the SGS factor with the proper relative relativistic velocity

$$v = \frac{\sqrt{[s - (m_1 - m_2)^2][s - (m_1 + m_2)^2]}}{s - m_1^2 - m_2^2}$$

Matching with perturbative calculations

We should **match** perturbative and non-perturbative results:

$$\sigma^{\text{Corr.}} = \sigma^{\text{Born}} \left(T(v) - \frac{\pi \alpha}{v} - \frac{\pi^2 \alpha^2}{3v^2} - \dots \right) + \Delta \sigma^{1-loop} + \Delta \sigma^{2-loop} + \dots$$

For a cross check the matching should be always verified analytically by looking at the threshold behavior of the perturbative corrections

Unstable particle production

In the case of production of unstable particles, e.g. $t\bar{t}$ or W^+W^- one can not relay upon bound state effect $(|\Psi(0)|^2)$ (multiple photon exchange) since the lifetime is comparable with the b.s. formation time, see e.g. V.S. Fadin and V.A. Khoze [Yad.Fiz.'1988], V.S. Fadin, V.A. Khoze and T. Sjostrand [Z.Phys.C'1990]

Nevertheless, direct perturbative calculations show the presence of the Coulomb singularity. See e.g. $z, \gamma^* \to W^+W^-$ in [D.Y.Bardin, W.Beenakker, A.Denner, PLB'1993].

N.B. Authors of this paper got

$$\beta = \frac{\sqrt{[s - (m_1 + m_2)^2][s - (m_1 - m_2)^2]}}{s}$$

But if we restore the factor being omitted there

$$\frac{s}{2(s-m_1^2-m_2^2)}\approx 1$$

we get exactly the relativistic relative velocity (one half)

■ Relativization of the SGS factor is not unique

- Relativization of the SGS factor is not unique
- Using just the relativistic relative velocity in the standard formula looks preferable

- Relativization of the SGS factor is not unique
- Using just the relativistic relative velocity in the standard formula looks preferable
- The factor is generalized for non-equal-mass case

- Relativization of the SGS factor is not unique
- Using just the relativistic relative velocity in the standard formula looks preferable
- The factor is generalized for non-equal-mass case
- $lue{}$ Numerically the effects for large v are subtle

- Relativization of the SGS factor is not unique
- Using just the relativistic relative velocity in the standard formula looks preferable
- The factor is generalized for non-equal-mass case
- Numerically the effects for large *v* are subtle
- SGS factor is the same for different partial waves and spins

- Relativization of the SGS factor is not unique
- Using just the relativistic relative velocity in the standard formula looks preferable
- The factor is generalized for non-equal-mass case
- Numerically the effects for large *v* are subtle
- SGS factor is the same for different partial waves and spins
- Matching with perturbative calculations should be taken into account